Don't click here unless you want to be banned.

LSL Wiki : LibraryWindTurbine

HomePage :: PageIndex :: RecentChanges :: RecentlyCommented :: UserSettings :: You are crawl338.us.archive.org

Wind Turbine Capacitor


This script will calculate the amount of watts of energy an object can store based on certain variables.

Variables:

Variable Type Variable Type
Air Density Air Pressure
Coefficient of Perfomance Cloud Cover
Curent Position Gas Constant
Gearbox/Bearings Efficiency Generator Efficiency
Rotor Size Rotor Swept Area
Sea Level Sun Angle
Temperature Wind Speed



Capacitor Script:

float Area;
float base;
float Capacitor;
float GasConstant;
float pascal;
float Power;
float sealevel = 101.32500;
float temperatureF;
float temperatureK;
float WindSpeed;
vector Scale;
vector sun;
vector pos;
default
{
    state_entry()
    {
        llSetTimerEvent(1);
    }
    timer()
    {
        //Get Sun Angle
        sun = llGetSunDirection();
        //Calculate Rotor Size
        Scale = llGetScale();
        //Get Current Position
        pos = llGetPos();
        //Air Pressure Non Relative To Sea Level
        base = llLog10(5- ((pos.z - llWater(ZERO_VECTOR))/15500));
        //Calculate Air Pressure In KiloPascal
        pascal = (sealevel + base);
        //Calculate Wind Speed
        WindSpeed = llVecMag(llWind(<0.0, 0.0, 0.0>));
        //Calculate Gas Constant
        GasConstant = ((200 * llCloud(<0.0, 0.0, 0.0>)) + 280);
        //Calculate Temperature In Degrees Fahrenheit
        temperatureF = ((((pascal * (2 * llPow(10,22)))/ (1.8311*llPow(10,20))/ 8.314472)/19.85553747) + (sun.z * 10));
        //Convert Termperature To Kelvin
        temperatureK = ((temperatureF + 459.67) * 5/9);
        //Calculate Rotor Swept Area
        Area = (2 * PI * (Scale.x * Scale.x)) + (2 * PI * Scale.x * Scale.y);
        //Calculate Power Output
        Power = 0.5 * (pascal / (GasConstant * temperatureK)) * Area * 0.35 * WindSpeed * 0.75 * .95;
        Capacitor += Power;
        llSetText((string)Capacitor + " watts stored",<1,1,1>,1);
    }
}




Formulas:

Wind Turbine Power:

    P = 0.5 x rho x A x Cp x V3 x Ng x Nb

where:
P = power in watts (746 watts = 1 hp) (1,000 watts = 1 kilowatt)
rho = air density (about 1.225 kg/m3 at sea level, less higher up)
A = rotor swept area, exposed to the wind (m2)
Cp = Coefficient of performance (.59 {Betz limit} is the maximum thoretically possible, .35 for a good design)
V = wind speed in meters/sec (20 mph = 9 m/s)
Ng = generator efficiency (50% for car alternator, 80% or possibly more for a permanent magnet generator or grid-connected induction generator)
Nb = gearbox/bearings efficiency (depends, could be as high as 95% if good)

D = P / (R * T)
    where:   D = density, kg/m3 
                 P = pressure, Pascals ( multiply mb by 100 to get Pascals)
                 R = gas constant , J/(kg*degK) = 287.05 for dry air
                 T = temperature, degK = deg C + 273.15

Dry air = 280
Wet air = 480

Area = (2 * PI * x^2) + (2 * Pi * x * z)


Jasa SEO Jasa SEO Murah Sepatu Online Toko Sepatu Online Sepatu Sepatu Murah Sepatu Safety Sepatu Futsal Cheapes Hostgator Coupon Link Booking Televisori offerte Notebook Offerte Berita Terkini Internet Marketer Muda Internet Marketer Indonesia Portatile Apple RDAnet Lorks Karikatur Bisnis Modal Kecil Bisnis UKM Berita Terbaru Iklan Baris Jasa SEO Jasa SEO Murah SEO Indonesia Konsultan SEO SEO Belajar SEO Kursus SEO Kursus SEO Murah Jam Tangan Casio Jam Tangan Casio Jam Tangan Murah Jam Tangan Grosir Baju Terbaru Grosir Baju Baju Terbaru Grosir Baju Murah Bisnis Online Belajar SEO Kerupuk Kerupuk kulit Social Bookmark Dofollow Social Bookmark Kumpulan Puisi Kirim Puisi bola hantu Penumbuh Rambut Penumbuh Rambut timbangan WBC Wonogiri Jasa SEO Murah Jasa SEO Jam Tangan Murah
There are 2 comments on this page. [Display comments/form]